A-11 ## Jamming Transition in Quasi-2D Self-Assembled Nanoparticle Monolayers Leandra S. Boucheron¹, Jacob T. Stanley¹, Yeling Dai^{1,4}, Sean You^{5,6}, Binhua Lin^{2,5}, Mati Meron², Suresh Narayanan³, Alec R. Sandy³, Zhang Jiang³, and Oleg G. Shpyrko¹ - ¹Department of Physics, University of California, San Diego, CA 92093 - ² Center for Advanced Radiation Sciences, University of Chicago, Chicago, IL 60637 - ³ Advanced Photon Source, Argonne National Laboratories, Argonne, IL 60439 - ⁴ Department of Materials Science & Engineering, University of California, Berkeley, CA 94720 - ⁵ James Franck Institute, University of Chicago, Chicago, IL 60637 - ⁶ Department of Chemical Physics, Harvard University, Cambridge, MA 02138 We experimentally probe the structure and interparticle dynamics of iron oxide nanoparticle thin films self-assembled at the liquid-air interface. Upon deposition on a water surface in a Langmuir-Blodgett trough and subsequent lateral compression, iron oxide nanocrystals coated in oleic acid ligands self-assemble into a relatively uniform quasi-2D monolayer. We verified this film structure by s-ray diffraction in grazing-incidence geometry (GIXD). Utilizing x-ray photon correlation spectroscopy (XPCS) at beamline 8-ID-I of the Advanced Photon Source at Argonne National Laboratory, we have measured the characteristic timescale of in-plane interparticle dynamics. The degree of jamming in the system has been quantified by fitting a stretched exponential model to the autocorrelation functions produced by XPCS measurements. A jamming exponent of 1.5 has been calculated, a value that has previously only been observed in 3D aging soft matter systems. Since the accepted explanation for this exponent is strongly correlated with the number of degrees of freedom [1], this result was unexpected given the reduced dimensionality of our system. Additionally, the q-dependence of the interparticle timescale in the film is supportive of an anomalous diffusion regime, $\langle x \rangle^2 \propto t^n$, with n > 1. I will present these results and their implications with regard to thin film self-assembly, structure, and rearrangement. [1] Bouchaud, J.-P., & Pitard, E. (2001). Anomalous dynamical light scattering in soft glassy gels. *The European Physical Journal E*, 6, 231–236